Present work Etiolated hypocotyls were inoculated with either tobacco necrosis virus (TNV) or Colletotrichum lindemuthianum, the latter isolated from infected cowpea at IITA as described previously ³ ⁴ Hypocotyls showing cellular browning were extracted as described previously ⁴ Antifungals were detected by bioautography of TLC plates ⁵ ⁶ and purified by preparative TLC [sihca gel 60_{F254}, C₆H₆-Et₂O (1 1) or CHCl₃-EtOH (97 3)]

Demethylhomopterocarpin was detected as in Table 1 by comparison with authentic spectra and had m p 130–130 5 lit 130–131 $^{-7}$ [α]_D²¹ –192 (c 0 1095 EtOH l 1 cm)

	Infective agent	
Plant	TNV	Colletoti ichum lindemuthianum
Jack bean	1200 1500 μg g R _i mp OR UV IR NMR	R_{\pm} UV IR
Cowpea cv IVu57	Frace R_I , UV	⁵⁽⁾ μg g R _f UV IR
Cowpea cv IVu76	Not detected ³	Absent in single experiment

Table 1 Occurrence of Demethylhomoptirocarpin following infection

Acknowledgements—The author thanks Professor R L Wain for his encouragement Dr G A Carter for advice and assistance with the biological work and Dr V J Higgins for spectra of demethylhomopterocarpin. The work was made possible by financial support from the Overseas Development Administration.

Phytochemistry 1974 Vol 13 292 to 293 Pergamon Press Printed in England

MINOR PHENOLIC CONSTITUENTS OF DALBERGIA RETUSA

GARY D MANNERS LEONARD JURD and KENNETH L STEVENS

Western Regional Research Laboratory Agricultural Research Scivice U.S. Department of Agriculture, Berkeley, CA 94710, U.S.A.

(Received 31 July 1973 Accepted 29 August 1973)

Key Word Index - Dalbergia retusa Leguminosae heartwood extractives chalcone flavanone cinnamyl phenol

Plant Dalbergia retusa Hemsley Source Panama Previous work The isolation of obtusaquinone, (\pm) -4-methoxydalbergione, (\pm) -obtusaquinol and the isoflavones, retusin

⁴ BAILLY J A and DEVERALL B J (1971) Physiol Plant Pathol 1, 435

LAMPARD J F and CARTER G A (1973) Ann Appl Biol 73, 31

⁶ HOMANS A L and FUCHS A (1970) I Chromatog 51, 327

SMITH D G McInnis A G Higgins V I and Millar R L (1971) Physiol Plant Pathol 1, 41

(7,8-dihydroxy-4'-methoxyisoflavone) and 8-O-methylretusin from D retusa heartwood has been resported, (\pm) -Obtusafuran isolated from petrol extracts may be an artefact formed from obtusaquinol by a thermal rearrangement during the isolation procedure Heartwood extractives of other Dalbergia species have recently been reviewed 5

Present work Heartwood sawdust was extracted successively with petrol, Et₂O, acetone and MeOH Preparative column chromatography on LH20(CHCl₃–EtOH, 10 1) of the concentrated ether extract gave (\pm)-obtusaquinol and a second, highly unstable, dihydric phenol (oil) This phenol was rapidly oxidized in air to obtusaquinone. The phenol formed a diacetate which, after chromatographic purification on silica gel, was obtained as a light yellow oil MS-m⁺ (m/e) obs 340 13166 [Calc for C₂₀H₂₀O₅, m⁺ (m/e)] 340 13106 IR $v_{\text{max}}^{\text{Nujol}}$ 1775, 1620, 1505, 1375, 1210, 1025 cm⁻¹. The 100 MHz NMR spectrum of the diacetate in CDCl₃ showed the presence of two acetyl groups (s at δ 2 22 and δ 2 26) two benzylic protons (d at δ 3 47, d 6 Hz), two vinylic protons (d4, d6 47, d7 16 Hz), d8, d9 24, sextet, d9 16, 6 and 6 Hz), the paracoupled protons at C-2 and C-5 of the phenol (d6 84 and d6 65 respectively) and five aromatic protons at d7 0–7 4. From these data this phenol is considered to be 4-cinnamyl-3-methoxycatechol (1)

This was confirmed by the synthesis of the diacetate from, (a) obtusaquinone by NaBH₄ reduction and acetylation of the product, and (b) from 3-methoxycatechol by cinnamylation in aqueous citric acid¹ and chromatographic separation of the acetylated products

Chromatography of the acetone extract on LH20 and silica gel, gave crystalline 4,2',4'-trihydroxychalcone (isoliquiritigenin) and 7,4'-dihydroxyflavanone (liquiritigenin) The chalcone separates from methanol as yellow needles, mp 199° and the flavanone as cream colored rosettes, mp 206–207° The identity of these compounds was confirmed by direct comparison with authentic specimens

¹ Jurd, L. Stevens, K. and Manners, G. (1972) Phytochemistry 11, 3287

² Jurd L Stevens K and Manners G (1972) Phytochemistry 11, 2535

³ JURD L MANNERS G and STEVENS K (1972) Chem Commun 992

⁴ JURD L STEVENS K and MANNERS, G (1973) Tetrahedron 2347

⁵ SESHADRI T R (1972) Phytochemistry 11, 881